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Purpose

Challenges in the transportation system
Increase in travel demand
Growth in congestion
Need to improve safety
Reality of limited resources

Solution: (Pro)Active Traffic Management

Dynamically manage recurrent and non-recurrent (incident)
congestion based on prevailing traffic conditions

Benefits

Maximize the efficiency of the facility
Increase safety



Proactive Perspective

Traditional Approach

W
W
W

nere congestion/queues have formed
nere the incident has occurred

nere inclement weather has been detected

Proactive Perspective

W
W
W

nere the congestion/queues are about to form
nere a crash Is more likely to occur

nere inclement weather is about to begin

“* Key: prediction in real-time



Data and Monitoring

Application of Intelligent Transportation Systems (ITS)
Traffic Detection Systems
Automatic Vehicle Identification (AVI) Systems
Microwave Vehicle Detection Systems (MVDS) &=
Weather Detection Systems 3 x

Weather sensors (e.g. temperature, precipitation, ANyttt

Countermeasures
Variable Speed Limit
Ramp Metering strategies
Queue Warning

Dynamic Rerouting and Traveler Information
Adaptive Signals




Data Availability
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Data Collection

Currently Available Data Source Characteristics

Availability Contents

Data Freeway & | Arterial C-Iira'nu- Source Agency
Expressway TMS* | SMS2 | Volume | Incident arity
MVDS vV vV v 305-605 CFX, RITIS
AVI(Toll tag) ) vV Individual CFX
BlueMAC3 \ \V Individual =~ Orange County
lteris3 \ \V Individual = Orange County
BlueTOAD3 v v Individual Sem'”oFliECO””ty'
InSync V \ 15min Orange County
SPM V \ Individual4 = Seminole County
HERE \ \ \ imin RITIS
INRIX v imin RITIS
Twitter \V \V Congestion Only \V < Twitter Mining

1 Time Mean Speed;

2 Space Mean Speed,;

3 All are Bluetooth system, only BlueMAC provides raw log data;
4 SPM records individual count.



Data Collection Technologies

Size of Current Datasets

In order to manage, store, and utilize the collected big data efficiently, the UCF research
team has purchased two high-end computing severs with in-house funding

MVDS 11 5 660.00 dat From 2013 to 2017
AVI 10 5 600.00 csv From 2013 to 2017
DMS 0.34 5 20.51 Ccsv From 2013 to 2017
SPM 125 3 4500 ik S0) SERED From January 2015

backup database
BlueTOAD 0.3 4 14.4 CsV From 2014 to 2017
InSync 0.35 2 8.44 csv From 2015 to 2017
Detector deployed
BlueMAC 2 1 24.00 csv since Dec 2016. Still
under deployment.
Iteris 0.25 3 9.00 csv From 2015 to 2017

MVDS 6.1 4 292.80 Ccsv From 2014 to 2017

HERE 8.20 4 393,60 csv A O AU

now
164 6523 7



Summary of Data Collection
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plication of Big Data in Operation:

ongestion Measurement

Average Congestion Index on SR408 Westbound

MVDS Congestion Index
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Real-Time Safety

Real-time safety analysis

A crash
Disruptive

Implementations
Understanding the microscopic crash mechanisms
Estimating crash likelihood in real-time
Improving traffic safety in real-time

A

Parameter

Pﬂme



Application of Big Data in Safety:

Tratfic Safety in Real-Time

Effe Cts Of traffl C Safety O n o Traffic Speed Before/After Crash Occurrence
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Proactive Perspective of Traffic

Safety (1)

What patterns are we looking for?

Developing a Hybrid Detailed Crash Prediction System Using
ITS Data on I-4 and Evaluating the Application Strategies

Speed profile before/after crash on 1-4
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Proactive Perspectives of Traffic

Safety (2)

Real-time crash risk for I 4
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Crash Prediction Model
Crash Precursors

Crasn Precursor #1:
Variation in speed upstream of crash location

Upstrearn of crasn
location




Crash Prediction Model
Crash Precursors

Crasn Precursor #2:
Speed upstream differential of crash location
with speed downstream

Upst

DS
crash

rearm of Dowrnstrearn of
| location crasn location




Crash Prediction Model
Crash Precursors

Crasn Precursor #3:
Covariance of volume across adjacent lanes
upstream of crash location

Upstrearn of crasn
location




Micro-Simulation: Speed Harmonization
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VSL & VMS in Driving Simulator

Warning Message Variable Speed Limit



A DATA FUSION FRAMEWORK FOR REAL-

TIME RISK ASSESSMENT ON FREEWAYS

i AVIUp-Stream Segment (U) : AVTI Crash Segment(C) : AVI Down-Stream Segment(D)
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Arrangement of RTMS and AVI Segments

The 15-mile on I-70 in Colorado is equipped with AVI, RTMS, and Weather Stations.
There were five sets of data used in this study; roadway geometry data, crash data, and the corresponding AVI, RTMS
and weather data.

The crash data were obtained from CDOT for a 15-mile segment on I-70 for 13 months (from October 2010 to October
2011).

Traffic data consists of space mean speed captured by 12 and 15 AVI detectors located on each east and west bounds,
respectively along I-70. Volume, occupancy and time mean speed are collected by 15 RTMSs on each direction.

AVI estimates SMS every 2-minute while RTMS provides traffic flow parameters every 30-second. Weather data were
recorded by three automated weather stations along the roadway section for the same time period.

The roadway data were extracted from Roadway Characteristics Inventory (RCl) and Single Line Diagrams (SLD).



Speed (mph)

Speed Standard Deviation (mph)

Explanatory Comparison between AVI

and RTMS Data
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Variable Importance

21

Variables

Avg. Occ. Upstream1_Time Slice _2

Avg. Occ. Upstream 2_Time slice_3

Log. Coef. of Var. of Speed Crash Segment Time Slice_2

Avg. Speed Downstream Segment Time Slice_2

1-Hour Visibility

Grade

S.D. Occ. Upstream 3_Time Slice 2

No. of Lanes

Avg. Speed Upstream 1_Time Slice_2

Avg. Speed Downstream Segment, Time Slice_3
Abs. Deg. of Curve
10-Minute Precipitation
Log. Coef. of Var. of Volume Downstream 2_Time Slice 3

1 oo Coef of \/ar of <need | Inctream <|eament Time <lice 2

Var.
Import.

1.000

0.887

0.798

0.742

0.684

0.661

0.642

0.521

0.519

0.431
0.337
0.335
0.334

0 220

Variables

Avg. Occ. Upstream 2_Time slice_3

Log. Coef. of Var. of Speed Upstream
1_Time Slice_2

Avg. Speed Upstream 2_Time Slice_2

S.D. Occ. Upstream 2_Time Slice 2

Avg. Speed Downstream 1_Time
Slice_2

Avg. Speed Downstream 2_Time
Slice_2

Avg. Occ. Upstream1_Time Slice _2

Avg. Occ. Upstream2_Time Slice _2

Log. Coef. of Var. of Volume

Downstream 2_Time Slice_2

Var.

Import.

1.000

0.997

0.804

0.541

0.457

0.391

0.374

0.348

0.249

. Var.
Variables
Import.
Log. Coef. of Var. of Speed
) ) 1.000
Crash Segment Time Slice_2
Avg. Speed Downstream
) ) 0.899
Segment Time Slice_2
Avg. Speed Downstream
0.741
Segment Time Slice_3
Avg. Speed upstream
9->p P 0.537

Segment Time Slice_2

Variables

1-Hour
Visibility
10-Minute
Precipitation

1-Hour

Precipitation

Var.
Import.

1.000

0.459

0.324



Models Comparison

Dzts Role = TRAIN

Data Raole = WALIDATE
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Model-1 All Data 92.157% 88.889% 6.481% 93.519% 0.946
Model-2 RTMS 87.879% 73.333% 7.154% 92.845% 0.762
Model-3 AVI 87.653% 70.192% 6.393% 93.607% 0.721
Model-4 Weather 84.364% 55.714% 5.854% 94.146% 0.675




Classification

100 ] - — 100 + T \| —
\ -
80+ — _ 80 |'_ ~ 3
- / '|
60 B0 {
- CUTOFF = 0.51
g4 CUTOFF = 06 — 404 I Overall Classification Rate = 87.87879 =\
B . ™ |||—, True Positive Rate = 73.33333 =,
Overall Classification Rate = 92.15686 . | i B \
True Positive Rate = 88.85889 ﬂ\ 20 4 | 1 False PUSIt!\"E Rate = 7.154472 |I
20 False Positive Rate = 5.481481 | True Megative Rate = 92.84553 || I'.
True Negative Rate = 93 51552 AN - .
T —_— - \ D - e
o4 — - R T T T T T T
T T T T T T 0.0 0.2 04 0.6 0.8 10
0.0 0.2 0.4 0.6 0.8 1.0 CUTOFF
CUTOFF
Overall Classification Rate True Positive Rate Overall Classification Rate True Positive Rate
False Positive Rate True Megative Rate False Positive Rate True Negative Rate
100 —
100 = -
1| —_ |
I/ — _j:f_\_ 80
= | .u'-'l | S B - —
\f A \
60 |.'I | B0 |
1
I CUTOFF= 05| |
40 4 '||". Overall Classification Rate = 87 65281 L“. CUTOFF = 003
_J'l True Positive Rate = 70.19231 \ Overall Classification Rate = 8436364
204 \ False Positive Rate = 6.393443 \ True Positive Rate = 55.71429
|| True MNegative Rate = 93.60656 | | False Positive Rate = 5.853659
od A - __'.= True Negative Rate = 94.14634 . B
T T T T T T D~| | [ — E———
T T T T T T
00 02 o4 06 o8 0 0.0 0.2 04 0.6 0.8 1.0
CUTOFF CUTOFF
Overall Classification Rate True Positive Rate Overall Classification Rate
False Positive Rate True Megative Rate

True Positive Rate

False Fositive Rate True Megative Rate




Framework of the Real-Time Risk

Assessment

Data Fusion
(Including Geomerty)

¢ YES

Model (1)

nsafe Condition

Encountered? NO

YES

Data Sources

RTMS, AVI,
eather Available?

Normal Operation

NG

r NO

RTMS Available?

YES

\ 4

Model (2)

Unsafe Traffic

Condition
Encountered?

YES

Flag for Hazard

O

NO

— NO

AVI Available?

YES

A 4

Model (3)

Unsafe Traffic
Condition
Encountered?

YES

Flag for Hazard

n!

NO

Weather Available?

YES
h 4

Model (4)

Critical Visibility or
Adverse Weather?

Provide Advisory
and Warning
Messages!

Forecasted
Weather

NOP>

Critical Visibility or
Adverse Weather?

NO

Normal Operation

YES

Provide Advisory
and Warning
Messages!




Investigation into Real-time
Weather & Traffic Data

Weather Stap
FMS 5




Weaving Sections Real-time safety

analysis

Real-time crash model for weaving segments

Variables Mean Std. p-value
Intercept -7.86 0.79 0.00
Speed difference (Spdair) 0.11 0.03 0.00
Log(Vehcnt) 0.65 0.12 0.00
Weaving configuration (1=no lane change)  0.57 0.20 0.01
Weaving influence length (Lmax) 0.21 0.07 0.00
Road surface condition (1=Wet) 1.22 0.24 0.00
Training ROC* 0.716

Validation ROC 0.704

Speed difference: 0 if Bm_spd < Em_spd,; _ e
otherwise|Bm_spd- Em spd| Lma™2728(1 +[VR)™*—1566Ny;,

[ 4
Using VSL tow Using RM to reduce

Then, improve safety of weaving segments in real-time



Pro-Active Traffic Management

Algorithm (1)

Ramp metering (RM)

Updated every 5 minutes based on occupancy and crash risk

r(k) =r(k -1+ Ko (6 —0,_)[+K.(p-p)

Green-phase duration, g(k), is calculated as follows,

oK) =(“k)j-c 0, <9(K) <G,

sat

Queue Control )
g Queue <10

g+1 10<Queue<20
<

g+2 20<Queue<30
g+3 Queue > 30




Active Traffic Management

Algorithm (2)

Variable speed limit (VSL)

When crash risk is higher than critical crash risk, VSLs at the

upstream and the downstream of the congested weaving segment
are activated

RM-VSL

RM is always active;

When queue is more than 10 vehicles, VSL is activated to reduce
speed limit on mainline to provide more gap for ramp vehicles

In Microscopic Simulation VISSIM

Through Component Object Model (COM) interface
Coded by Visual Basic for Application



Experiment design

@ Data Collection Points Detectors Data Collection Points @
L 1,300 feet | 1,130 feet . 330feet 2,000 feet
- g g 1 i
Case VSL RM

1 N/A* NA

2 N/A Ks=0

3 N/A Ks=2.5x10° (no Queue Control)

4 N/A Ks=2.5x108 (Queue Control)

5 Upstream 50 mph, Downstream remains N/A

6 Upstream 45 mph, Downstream remains N/A

7 Upstream remains, Downstream 60 mph N/A

8 Upstream remains, Downstream 65 mph N/A

9 Upstream 50 mph, Downstream 60 mph N/A

10 Upstream 45 mph, Downstream 60 mph N/A

11 Upstream 50 mph, Downstream 65 mph N/A

12 Upstream 45 mph, Downstream 65 mph N/A

13 Upstream 45 mph, Downstream 55 mph Ks=2.5x10° (Queue Control)




Impact of RM on real time Crash Odds




Impact of VSL and RM

Conditional Crash Risk ddds Ratio

0.25
1

I High risk

Conditional Crash Risk

50 100 150 200 150 200
Time Time



Impact of P-ATM

ATM results

Weaving Non-weaving
Description Case _ Conflict _ Conflict Ayerage travel
Conflict Change OR Conflict Change time for total
% %
N/A No ATM 1 705 N/A 1.00 59 N/A 98.3
Traditional 2 653 -7.3 1.01 38 -35.6 97.9
RM No Queue 3 955 -21.2 0.95 41 -30.5 113.7
Queue control 4 621 -11.9 0.92 40 -31.7 101.4
Up 50 5 639 -9.3 0.88 62 5.8 100.1
Up 45 6 575 -184 0.82 43 -26.9 101.3
DW 60 7 705 0.1 1.00 59 -0.3 97.7
VSL DW 65 8 705 0.0 1.00 60 1.4 97.4
Up 50, Dw 60 9 639 -9.3 0.88 63 1.7 99.8
Up 45, Dw 60 10 575 -184 0.82 44 -25.2 101.1
Up 50, Dw 65 11 639 -9.3 0.88 63 7.8 99.6
Up 45, Dw 65 12 575 -18.4 0.82 43 -26.1 101.0
\Fig"l_ Meonae | 13 586 -16.8 0.94 43 -27.6 105.0




Arterials Real-Time Safety

Four urban arterials in Orlando, Florida were

chosen;
Crash data were collected from March, 2017 to [

December, 2017;

Space-mean speed data collected by 23
IterisVelocity Bluetooth detectors;

Signal timing and traffic volume provided by

23 adaptive signal controllers; Legend

'('< Airport Weather Station

IterisVelocity Bluetooth Detector

Weather characteristics collected from MCO

¢ Signalized Intersection

m= Selected Segment
0 0.4750.95 1.9 285 38 ;
- —— — MileS Discarded Segment

5/30/2018 33



Data Preparation

(Time period: 18:11~ 18:31, 10/13/17)

(Location: segment I)

Independent Variables
Crash Event ‘

11 1. Speed characteristics 1l
11 2. Upstream and downstream volume (]
(| 3. Upstream and downstream signal phasing (|
Il 4. Signal coordination 11
: 5. Weather information } :

Matched case-control design with a control-to-

case ratio of 4:1 was employed to select the

corresponding non-crash events for each crash Upsteam ) Do

Intersection Intersection
————— =l ————————————*————————_.——— m— -
event’ _: 1‘ ﬁ Crash Event on Segment I ]| : (=]
o Il 10/13/17 18:31 o 1l
Adaptive Signal | | |Bluetooth Adaptive Signal | | | Bluetooth
11 Detector Controller (] Detector
(I (|

Three confounding factors, i.e., location, time Controller

Average Segment Length=0.43 mile

of day, and day of the week, were selected as _ Independent Variables
Matched Non-Crash Event (Time period: 18:11~ 18:31, 10/20/17)
(Location: segment I)

| 1. Speed characteristics
| 2. Upstream and downstream volume
| 3. Upstream and downstream signal phasing

| [
| I 1
| 1
: | L 4. Signal coordination : :
| [

matching factors;

| < i .
| 5. Weather information

The real-time travel speed data were extracted

for a period of 20 minutes (divided into four 5- | ==77==- Upsream ] Do

Intersection Intersection

minute time slices) prior to crash occurrence B TR Tomosn————— g

11

11 10/20/17 18:31 .
Adaptive Signal | | |Bluetooth Adaptive Signal

[

11

Bluetooth

Controller Detector Controller Detector

Average Segment Length=0.43 mile
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Results

Bayesian Conditional Logistic Models

Slice 1 Slice 2 Slice 3 Slice 4
Parameter
Mean (95% . Mean (95% . Mean (95% . Mean (95% .
BCI) Hazard Ratio BCl) Hazard Ratio BCl) Hazard Ratio BCI) Hazard Ratio
-0.049 -0.025
Avg_speed | o071 0.029)| 9% [(-0048 -0.00a)|  O97° ) ) - -
0.024 0.024 0.024 0.036
Up_VOLLT | 6 007, 0.044) 1.024 (0.005, 0.044) 1.024 (0.006, 0.045) 1.024 (0.014, 0.06) 1.037
Down_GreenR -0.042
atio i i (-0.075, -0.011) 0.959 i i i i
0.551
Rainy (0.02374, 1.735 0.667 1.948 0.682 1.978 0.72 2.054

1.065)*

(0.055, 1.274)

(0.037, 1.322)

(0.078, 1.341)




Implementation

UCF team has implemented the Real-Time risk
estimation in the following:

[-4, I-95 and CFX network in Orlando

I-70 in Colorado

Motorways in the Netherlands

City streets in Cyprus

Expressways in China

Currently Orange county arterials

30 Km of an Expressway in Stockholm is currently
operational

36



Vision of Big Data for Transportation

More Proactive (but data intensive) approaches / Real-
Time
Ever richer information

Smartphones, sensors, onboard vehicle hardware, provide continuous data
Traffic status, weather conditions in real-time

Better operation and safety
Bottleneck detection in real-time
Crash risk evaluation and prediction in real-time

More accurate prediction

Formation of congestion, queue length, congestion duration
Crash-prone conditions: unstable traffic flow, adverse weather

Timely communication
Media: smartphone, webpage, DMS, radio

Suggested countermeasures: trip planning, route choice, travel time calculation,
VSL, speed advice, RM, etc. 37
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