Using Big Data Safety Analytics for Proactive Traffic Management

Dr. Mohamed Abdel-Aty, PE Trustee Chair Pegasus Professor and Chair Department of Civil, Environmental & Construction Engineering

University of Central Florida, USA

Editor-in-Chief, Accident Analysis & Prevention

• Challenges in the transportation system

- Increase in travel demand
- Growth in congestion
- Need to improve safety
- Reality of limited resources

Solution: (Pro)Active Traffic Management

Dynamically manage recurrent and non-recurrent (incident) congestion based on prevailing traffic conditions

Benefits

- Maximize the efficiency of the facility
- Increase safety

Proactive Perspective

Traditional Approach

- Where congestion/queues have formed
- Where the incident has occurred
- Where inclement weather has been detected

Proactive Perspective

- Where the congestion/queues are <u>about to form</u>
- Where a crash is <u>more likely to occur</u>
- Where inclement weather is <u>about to begin</u>
- Key: prediction in real-time

Data and Monitoring

Application of Intelligent Transportation Systems (ITS)

- Traffic Detection Systems
 - Automatic Vehicle Identification (AVI) Systems
 - Microwave Vehicle Detection Systems (MVDS)
- Weather Detection Systems
 - Weather sensors (e.g. temperature, precipitation,
- Countermeasures
 - Variable Speed Limit
 - Ramp Metering strategies
 - Queue Warning
 - Dynamic Rerouting and Traveler Information
 - Adaptive Signals

MVDS S

Data Availability

Data Collection

Currently Available Data Source Characteristics

	Availal	oility	Contents				Granu-		
Data	Freeway & Expressway	Arterial	TMS¹	SMS ²	Volume	Incident	larity	Source Agency	
MVDS	\checkmark		\checkmark		\checkmark		3os-6os	CFX, RITIS	
AVI(Toll tag)	\checkmark			\checkmark			Individual	CFX	
BlueMAC ³		\checkmark		\checkmark			Individual	Orange County	
lteris ³		\checkmark					Individual	Orange County	
BlueTOAD ³		\checkmark		\checkmark			Individual	Seminole County, FTE	
InSync		\checkmark			\checkmark		15min	Orange County	
SPM		\checkmark			\checkmark		Individual ⁴	Seminole County	
HERE	\checkmark	\checkmark					ımin	RITIS	
INRIX							ımin	RITIS	
Twitter			Co	ngestion	Only		_	Twitter Mining	

1 Time Mean Speed;

2 Space Mean Speed;

3 All are Bluetooth system, only BlueMAC provides raw log data;

4 SPM records individual count.

Data Collection Technologies

Size of Current Datasets

 In order to manage, store, and utilize the collected big data efficiently, the UCF research team has purchased two high-end computing severs with in-house funding

Source	Name of Dataset	Monthly raw data size (Gbytes)	Expected periods (Years)	Expected Size (GB, as of 2017)	Format	Data collection period
	MVDS	11	5	660.00	dat	From 2013 to 2017
CFX	AVI	10	5	600.00	CSV	From 2013 to 2017
	DMS	0.34	5	20.51	CSV	From 2013 to 2017
Seminole County	SPM	125	3	4500	MS SQL Server backup database	From January 2015
	BlueTOAD	0.3	4	14.4	CSV	From 2014 to 2017
Orange County	InSync	0.35	2	8.44	CSV	From 2015 to 2017
	BlueMAC	2	1	24.00	CSV	Detector deployed since Dec 2016. Still under deployment.
	Iteris	0.25	3	9.00	CSV	From 2015 to 2017
RITIS	MVDS	6.1	4	292.80	CSV	From 2014 to 2017
	HERE	HERE 8.20 4		393.60	CSV	From Oct, 2013 till now
Total		164		6523		

7

Summary of Data Collection

Application of Big Data in Operation: Congestion Measurement

- MVDS Congestion Index
 - Congestion Index (CI) =

Free Flow Speed–Speed Free Flow Speed

• Free Flow Speed = 85th percentile speed

Real-Time Safety

Real-time safety analysis

- Implementations
 - Understanding the microscopic crash mechanisms
 - Estimating crash likelihood in real-time
 - Improving traffic safety in real-time

Application of Big Data in Safety: Traffic Safety in Real-Time

Speed

(mph)

100

90

80

70 60

> 50 40

> 30

20

0

Effects of traffic safety on operation

- Crash-leading congestion
- Real-time speed profile by lane
- Real-time speed variation

and and a

Direction: WB, @MM:12.1, Type: Rear-end, Vehicles: 4, Injuries: 3

Proactive Perspective of Traffic Safety (1)

- What patterns are we looking for?
 - Developing a Hybrid Detailed Crash Prediction System Using ITS Data on I-4 and Evaluating the Application Strategies
 - Speed profile before/after crash on I-4

Proactive Perspectives of Traffic Safety (2)

Real-time crash risk for I-4

Hazard Ratio: Contour plots of hazard ratios corresponding to coefficient of variation in speed (42 model outputs)

Crash Prediction Model Crash Precursors

Crash Precursor #1:

Variation in speed upstream of crash location

Crash Prediction Model
Crash Precursors

Crash Precursor #2: Speed upstream differential of crash location with speed downstream

Crash Prediction Model
Crash Precursors

Crash Precursor #3:

Covariance of volume across adjacent lanes upstream of crash location

Micro-Simulation: Speed Harmonization

43 8 peeds (30 second)

Stabilization in 30-second speed profiles following ITS strategies implementation

VSL & VMS in Driving Simulator

Warning Message

Variable Speed Limit

A DATA FUSION FRAMEWORK FOR REAL-TIME RISK ASSESSMENT ON FREEWAYS

- The 15-mile on I-70 in Colorado is equipped with AVI, RTMS, and Weather Stations.
- There were five sets of data used in this study; roadway geometry data, crash data, and the corresponding AVI, RTMS and weather data.
- The crash data were obtained from CDOT for a 15-mile segment on I-70 for 13 months (from October 2010 to October 2011).
- Traffic data consists of space mean speed captured by 12 and 15 AVI detectors located on each east and west bounds, respectively along I-70. Volume, occupancy and time mean speed are collected by 15 RTMSs on each direction.
- AVI estimates SMS every 2-minute while RTMS provides traffic flow parameters every 30-second. Weather data were recorded by three automated weather stations along the roadway section for the same time period.
- The roadway data were extracted from Roadway Characteristics Inventory (RCI) and Single Line Diagrams (SLD).

Explanatory Comparison between AVI and RTMS Data

Crash Location: Milepost 217.7

Crash Location: Milepost 217.5

Variable Importance

21 Model-1 (All Data)	Model-2 (RTMS)	Model-3 (AV	Model-4 (Weather)				
Variables	Var. Import.	Variables	Var. Import.	Variables	Var. Import.	Variables	Var. Import.
Avg. Occ. Upstream1_Time Slice _2	1.000	Avg. Occ. Upstream 2_Time slice_3	1.000	Log. Coef. of Var. of Speed Crash Segment Time Slice_2	1.000	1-Hour Visibility	1.000
Avg. Occ. Upstream 2_Time slice_3	0.887	Log. Coef. of Var. of Speed Upstream 1_Time Slice_2	0.997	Avg. Speed Downstream Segment Time Slice_2	0.899	10-Minute Precipitation	0.459
Log. Coef. of Var. of Speed Crash Segment Time Slice_2	0.798	Avg. Speed Upstream 2_Time Slice_2	0.804	Avg. Speed Downstream Segment Time Slice_3	0.741	1-Hour Precipitation	0.324
Avg. Speed Downstream Segment Time Slice_2	0.742	S.D. Occ. Upstream 2_Time Slice 2	0.541	Avg. Speed upstream Segment Time Slice_2	0.537		
1-Hour Visibility	0.684	Avg. Speed Downstream 1_Time Slice_2	0.457				
Grade	0.661	Avg. Speed Downstream 2_Time Slice_2	0.391				
S.D. Occ. Upstream 3_Time Slice 2	0.642	Avg. Occ. Upstream1_Time Slice _2	0.374				
No. of Lanes	0.521	Avg. Occ. Upstream2_Time Slice _2	0.348				
Avg. Speed Upstream 1_Time Slice_2	0.519	Log. Coef. of Var. of Volume Downstream 2_Time Slice_2	0.249				
Avg. Speed Downstream Segment, Time Slice_3	0.431						
Abs. Deg. of Curve	0.337						
10-Minute Precipitation	0.335						
Log. Coef. of Var. of Volume Downstream 2_Time Slice 3	0.334						
Log Coef of Var of Speed Unstream Segment Time Slice 3	0.329						

Models Comparison

ZZ

Model	Model Description	Overall Classificatio n Rate	True Positive Rate	False Positive Rate	True Negative Rate	ROC Index
Model-1	All Data	92.157%	88.889%	6.481%	93.519%	0.946
Model-2	RTMS	87.879%	73.333%	7.154%	92.845%	0.762
Model-3	AVI	87.653%	70.192%	6.393%	93.607%	0.721
Model-4	Weather	84.364%	55.714%	5.854%	94.146%	0.675

Classification Rates

- 3

Framework of the Real-Time Risk Assessment

Investigation into Real-time Weather & Traffic Data

• Real-Time weather and traffic monitoring system on I-4

Weaving Sections Real-time safety analysis

Real-time crash model for weaving segments

Variables	Mean	Std.	p-value
Intercept	-7.86	0.79	0.00
Speed difference (Spddif)	0.11	0.03	0.00
Log(Vehcnt)	0.65	0.12	0.00
Weaving configuration (1=no lane change)	0.57	0.20	0.01
Weaving influence length (Lmax)	0.21	0.07	0.00
Road surface condition (1=Wet)	1.22	0.24	0.00
Training ROC*		0.716	
Validation ROC		0.704	

Then, improve safety of weaving segments in real-time

Pro-Active Traffic Management Algorithm (1)

- Ramp metering (RM)
 - Updated every 5 minutes based on occupancy and crash risk

$$r(k) = r(k-1) + K_R(o - o_{k-1}) + K_s(\hat{p} - p_{k-1})$$

• Green-phase duration, g(k), is calculated as follows,

$$g(k) = \left(\frac{r(k)}{r_{sat}}\right) C \qquad g_{\min} \le g(k) \le g_{\max}$$

• Queue Control $g' = \begin{cases} g & Queue \le 10\\ g+1 & 10 < Queue \le 20\\ g+2 & 20 < Queue \le 30\\ g+3 & Queue > 30 \end{cases}$

Active Traffic Management Algorithm (2)

Variable speed limit (VSL)

When crash risk is higher than critical crash risk, VSLs at the upstream and the downstream of the congested weaving segment are activated

RM-VSL

RM is always active;

When queue is more than 10 vehicles, VSL is activated to reduce speed limit on mainline to provide more gap for ramp vehicles

In Microscopic Simulation VISSIM Through Component Object Model (COM) interface Coded by Visual Basic for Application

Experiment design

Off-F	amn	RM
		Occupancy is measured On-Ramp
V	Data Collection Points	Detectors Data Collection Points VSL
	1,300 feet 1,130 feet	330 feet 2,000 feet
Case	VSL	RM
1	N/A#	NA
2	N/A	Ks=0
3	N/A	Ks= 2.5×10^6 (no Queue Control)
4	N/A	Ks= 2.5×10^{6} (Queue Control)
5	Upstream 50 mph, Downstream remains	N/A
6	Upstream 45 mph, Downstream remains	N/A
7	Upstream remains, Downstream 60 mph	N/A
8	Upstream remains, Downstream 65 mph	N/A
9	Upstream 50 mph, Downstream 60 mph	N/A
10	Upstream 45 mph, Downstream 60 mph	N/A
11	Upstream 50 mph, Downstream 65 mph	N/A
12	Upstream 45 mph, Downstream 65 mph	N/A
13	Upstream 45 mph, Downstream 55 mph	Ks= 2.5×10^{6} (Queue Control)

Impact of RM on real time Crash Odds

GUCF

Impact of VSL and RM

Conditional Crash Risk

Odds Ratio

Time

Impact of P-ATM

ATM results

Description			Weaving			Non-w	eaving		
		Case		Conflict			Conflict	Average travel	
		Case	Conflict	Change	OR	Conflict	Change	time for total	
				%			%		
N/A	No ATM	1	705	N/A	1.00	59	N/A	98.3	
	Traditional	2	653	-7.3	1.01	38	-35.6	97.9	
RM	No Queue	3	555	-21.2	0.95	41	-30.5	113.7	
	Queue control	4	621	-11.9	0.92	40	-31.7	101.4	
	Up 50	5	639	-9.3	0.88	62	5.8	100.1	
	Up 45	6	575	-18.4	0.82	43	-26.9	101.3	
	DW 60	7	705	0.1	1.00	59	-0.3	97.7	
VCI	DW 65	8	705	0.0	1.00	60	1.4	97.4	
VSL	Up 50, Dw 60	9	639	-9.3	0.88	63	7.7	99.8	
	Up 45, Dw 60	10	575	-18.4	0.82	44	-25.2	101.1	
	Up 50, Dw 65	11	639	-9.3	0.88	63	7.8	99.6	
	Up 45, Dw 65	12	575	-18.4	0.82	43	-26.1	101.0	
RM- VSL	Queue control &Up 45	13	586	-16.8	0.94	43	-27.6	105.0	

Arterials Real-Time Safety

- Four urban arterials in Orlando, Florida were chosen;
- Crash data were collected from March, 2017 to December, 2017;
- Space-mean speed data collected by 23
 IterisVelocity Bluetooth detectors;
- Signal timing and traffic volume provided by 23 adaptive signal controllers;
- Weather characteristics collected from MCO

Data Preparation

- Matched case-control design with a control-tocase ratio of 4:1 was employed to select the corresponding non-crash events for each crash event;
- Three confounding factors, i.e., location, time of day, and day of the week, were selected as matching factors;
- The real-time travel speed data were extracted for a period of 20 minutes (divided into four 5minute time slices) prior to crash occurrence

Results

Bayesian Conditional Logistic Models

Parameter	Slice 1		Slice 2		Slie	ce 3	Slice 4	
	Mean (95% BCI)	Hazard Ratio	Mean (95% BCI)	Hazard Ratio	Mean (95% BCI)	Hazard Ratio	Mean (95% BCI)	Hazard Ratio
Avg_speed	-0.049 (-0.071, -0.029)	0.952	-0.025 (-0.048, -0.004)	0.975	-	-	-	-
Up_Vol_LT	0.024 (0.007, 0.044)	1.024	0.024 (0.005, 0.044)	1.024	0.024 (0.006, 0.045)	1.024	0.036 (0.014, 0.06)	1.037
Down_GreenR atio	-	-	-0.042 (-0.075, -0.011)	0.959	-	-	-	-
Rainy	0.551 (0.02374, 1.065)*	1.735	0.667 (0.055, 1.274)	1.948	0.682 (0.037, 1.322)	1.978	0.72 (0.078, 1.341)	2.054

Implementation

UCF team has implemented the Real-Time risk estimation in the following:

- I-4, I-95 and CFX network in Orlando
- I-70 in Colorado
- Motorways in the Netherlands
- City streets in Cyprus
- Expressways in China
- Currently Orange county arterials
- 30 Km of an Expressway in Stockholm is currently operational

Vision of Big Data for Transportation

 More Proactive (but data intensive) approaches / Real-Time

Ever richer information

- Smartphones, sensors, onboard vehicle hardware, provide continuous data
- Traffic status, weather conditions in real-time

Better operation and safety

- Bottleneck detection in real-time
- Crash risk evaluation and prediction in real-time

More accurate prediction

- Formation of congestion, queue length, congestion duration
- Crash-prone conditions: unstable traffic flow, adverse weather

Timely communication

- Media: smartphone, webpage, DMS, radio
- Suggested countermeasures: trip planning, route choice, travel time calculation, VSL, speed advice, RM, etc.

Thank You

Dr. Mohamed Abdel-Aty, PE

Center for Advanced Transportation Systems Simulation Department of Civil, Environmental & Construction Engineering University of Central Florida Orlando, FL 32816-2450