Trends in Pedestrian, Bicyclist and Motorist Behaviors

Sources \& Methods

- Comparison of two studies: 2003 \& 2004 to 2012 \& 2013
Totals: Pedestrian $1,265 \& 1,525 \quad+21 \%$ Bicyclists 929 \& $1,433 \quad+54 \%$
- All long form police crash reports for Orange, Seminole \& Osceola Counties
- Crash typing criteria developed by FHWA

Generalized Crash Types 2012 \& 2013 Study

Motorist Turning $=17 \%$

Motorist Failure to Yield, Not Turning = 10\%
Pedestrian Mid-Block $=\mathbf{2 1 \%}$ Ped At Signal = 6\%
Walking Along Road = 6\%
Parking Lots, Driveways, Other $=\mathbf{2 5 \%}$

Unusual/Other = 19\%

Changes in Pedestrian Crash Types

- Comparing detailed crash typing of long form reports from 2003/04 and 2012/13
- Comparing crashes along 2-lane roads and roads with 4 or more lanes
- Focus on incapacitating injuries and fatalities

Motorist DriveOut

All Crashes

2-Lane
$53 \rightarrow 21$
\% Change = -60\%
4 or More Lanes
$52 \rightarrow 34$
$\%$ Change $=\mathbf{- 3 5 \%}$
Incapacitating \& Fatal
2-Lane
$6 \rightarrow 2$
$\%$ Change = -67\%
4 or More Lanes
$19 \rightarrow 9$
$\%$ Change $=\mathbf{- 5 3 \%}$

Generalized Crash Types 2012 \& 2013 Study

> Motorist Crossing or
> Turning = 57\%

Bicyclist Crossing or Turning = 15\%
Motorist Overtaking $=\mathbf{6 \%}$
Wrong-way Bicycling = 6\%
Parking Lots, Driveways, Other = $\mathbf{1 1 \%}$

Motorist Overtaking, Daytime, Cyclist in Travel Lane, Injury Crash
= 1%
Motorist Overtaking,
Daytime, Cyclist in Travel
Lane, Incapacitating Injury
$=0.2 \% *(*$ None fatal)

Crash Types Relevant to Bike Lanes

- Do bike lanes or paved shoulders improve motorist and/or bicyclist behavior?

Crash Types Relevant to Bike Lanes

- Comparing detailed crash typing of long form reports from 2003/04 and 2012/13
- Crashes on arterials and collectors
- Comparing crashes on travel lanes, bike lanes \& sidewalks
- ~ 500 miles of bike lanes \& paved shoulders;
$\sim 1,000$ miles without

Motorist-Caused Bike Crashes by Bicyclist Position Orlando Metro Area

Most Effective

Countermeasures
Engineering Solutions

- High-Emphasis

Crossings = up to 22% (36\% F\&I)

- Speed Reduction
= up to 28% (64% F\&I)
- Roadway Lighting
= up to 12% (21% F\&I)
- Parking Lot Design Improvements
= up to 19% (8% F\&I)

Most Effective

Countermeasures
Education \&
Enforcement Solutions

- Pedestrian Defensive Walking Strategies
= up to 84% (80% F\&I)
- Motorist Education \& Enforcement Strategies
= up to $88 \%(89 \%$ F\&I)

Most Effective

 CountermeasuresEngineering Solutions

- Speed Reduction
= up to 12% (36% F\&I)
- Roadway Lighting
= up to 4\% (10% F\&I)

Most Effective
 Countermeasures

Education \& Enforcement Solutions

- Bicyclist Defensive Driving Strategies = up to 82\% (79\% F\&I)
- Motorist Education \& Enforcement Strategies
=up to 59\% (47\% F\&I)

MetroPlanOrlando.org | (407) 481-5672 250 S. Orange Ave., Suite 200, Orlando, FT 32801

